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987. An Accurute Determination of the Crystal Structure of 
Potassium P yrosulphate. 

By H. LYNTON and MARY R. TRUTER. 

Potassium pyrosulphate, K2S20,, has been investigated by three- 
dimensional X-ray crystal-structure analysis. Refinement of the co- 
ordinates and anisotropic thermal motion parameters reduced the agreement 
index to 0.076. The bond lengths in the pyrosulphate ion, corrected for 
rotational oscillations, are S-0 (bridge) = 1.645 f 0.005 A, and S O  = 
1-437 f 0.004 A, the mean of three independent values; the S-0-S angle 
is 124-2" f 0.5". 

THE pyrosulphate ion, S,0,2-, might be expected to consist of two SO, tetrahedra sharing 
one oxygen atom as in the other pyro-ions X,O,%- of which the structures are kn0wn.l 
Although a few pyro-ions having an X-0-X angle of 180" have been reported, the more 
accurate determinations usually give values in the range 110-140". The hydrogen 
pyrosulphate ion in the nitronium salt was found to have an angle of about 125". 

A number of accurate determinations of S-0 bond lengths have now been made, and 
the pyrosulphate ion is of particular interest because it contains bonds involving both 
shared and unshared oxygen atoms. Conclusive proof that there is a significant difference 
in the distances from sulphur to unshared and to shared oxygen atoms was first obtained 
in a study of potassium ethyl sulphate, KO,S=O*C,H,. The present analysis was under- 
taken for comparison with the ethyl sulphate ion and with the isoelectronic iminodi- 
sulphonate ion, (S03*NH*S0J2-. 

Preparation of the crystals was very difficult ; this probably explains why the structure 
has not been determined previously. From the system R,O-H,O-SO, (where R = Na, 
K, or NH,) one of the authors (H. L.) obtained a variety of products; details of their 
preparation and preliminary X-ray investigation are available elsewhere.4 Eventually, 
crystals of potassium pyrosulphate were obtained by heating " potassium octasulphate " 
prepared by Weber's procedure.6 The structure determination proved to be easy because 

Barclay, Cox, and Lynton. Chem. and Ind., 1956, 178. 
Steeman and MacGillavry, Acta Cryst., 1954, 7, 402. 
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preliminary measurements indicated that potassium pyrosulphate and potassium imino- 
disulphonate were probably iso-structural. Essentially the task was to collect observ- 
ations, apply a refinement procedure, and determine the dimensions of the anion as 
accurately as possible. 

Crystal Data.-K,S,O,, .M = 254.33. Monoclinic, a = 12.35, b = 7.31, c = 7.27 all 
&0-005 A, p = 93” 7’ f 4-5‘. Space group, 
C 2 / c  (C,h6, No. 15). Cu-K, radiation, single-crystal oscillation and Weissenberg photographs, 
absorption coefficient, p = 184 crn.-I. The pyrosulphate ion must lie on a two-fold axis or a 
centre of symmetry. 

Refinement.-The close resemblance between the unit-cell dimensions and those of potassium 
iminodisulphonate (a = 12-430, b = 7.458, c = 7.175 A, p = 91’ ll’), and the discovery that 
the space groups are the same, suggested that the two compounds were iso-structural. This 
was confirmed by calculating the agreement index R (R = zl(lFol - lFol)l/zlFol) between 
the observed structure factors and those calculated for the iminodisulphonate ; this value was 
0.25 for all (hkl) reflections. 

Refinement was carried out by the method of least squares; the atomic co-ordinates and 
the anisotropic thermal parameters for each atom were adjusted until, after five cycles, the 
shifts indicated were less than one-quarter of the corresponding standard deviations. Refine- 
ment was complete with B = 0.076. 

U = 655.3 As, 2 = 4, D, = 2.58, F(000) = 504. 

TABLE 1. Atomic co-ordinates. 
xla Y lb zjc X’ (A) U ( X )  (A) Y’ (A) .(Y) (A) Z’ (A) O ( Z )  (A) 

K ...... 0.353 0.651 0.647 4.110 0.002 4.756 0.002 4.693 0.002 
S ...... 0.398 0.183 0.641 4.663 0.002 1.338 0.002 4.654 0.002 
O(1) ... 0.444 0.287 0.498 5.281 0.007 2.098 0.008 3.611 0.007 
O(2) ... 0.332 0.032 0.581 3.876 0.006 0-235 0.007 4-220 0.008 
O(3) ... 0.350 0.296 0.777 4.014 0.007 2.164 0.007 5-639 0.007 
O(4) ... 0.500 0-078 0-750 5.879 0 0.573 0.008 5-445 0 

TABLE 2. Thermal parameters (all units aye lo4 A2). 
ull ‘28 u33 ul, 0 u23 0 u,, 0 

K ...... 229 10 244 10 202 10 24 9 41 9 31 8 
s ...... 122 9 141 9 165 10 -12 7 9 9  31 8 
0(1)  ... 223 33 334 38 208 35 -26 30 106 31 39 27 

O(3) ... 266 36 270 35 234 34 144 30 -10 31 47 27 
O(4) ... 223 42 88 36 249 49 0 0  0 0  68 36 

O(2) ... 180 30 237 36 379 39 -67 27 -48 33 -102 28 

Analysis of the anisotropic thermal motion was carried out by assuming that the pyro- 
sulphate ion could be regarded as a rigid body. From this the corrections in the atomic 
co-ordinates to allow for systematic errors due to rotational oscillation were calculated. 

Resu2ts.-The structure as a whole is shown in Fig. 1; the bridging oxygen atoms of the 
pyrosulphate ions lie on %fold axes by which the two SO, groups in each anion are related. 
Figs. 1 and 2 show the numbering of the atoms. The atomic co-ordinates are shown in Table 1 
both as fractions and in A where X’, Y’, and 2’ refer to orthogonal axes parallel to a, b, and c* 
respectively; their standard deviations are also shown. Table 2 shows the thermal parameters 
and their standard deviations; UI1, U22, and U,, are the mean-square amplitudes of vibration 
parallel to the a*, b*, and c* axes respectively and, with UI2, U23, and U13, give the magnitude 
and orientation of the ellipsoid of vibration with respect to the crystallographic axes. Table 3 
consists of the observed and calculated structure factors. 

Analysis of the thermal motion was made after the determination of the position of the mass 
centre (5.879, 1.356, 5.445 A) and the direction cosines of the principal axes of inertia, I, 11, 
and 111, of the pyrosulphate ion. These direction cosines, with respect to the orthogonal 
system of Table 1, are: 

I, 0.84, 0.00, 0.54; 

Jeffrey and Jones, A d a  Cryst., 1956, 9, 283. 
Cruickshank, Actu Cryst., 1966, 9, 757. 

11, 0.00, 1.00, 0.00; 111, 0.54, 0.00, 0.84 
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TABLE 3. Observed and calculated structure factors ( x 10). 
(Rejections which are too weak to be observed have been omitted.) 
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-302 

244 
-436 

347 
280 
317 

- 354 
-278 
-165 

329 
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32G 

- 246 
378 

-47s 
196 

-30:; 
-412 

245 
198 
209 
250 

-249 
- 207 

335 
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481 
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FIG. 1. The structztre projected along [OOl]. Large circles represent fiotassium ions, medium circles sulphur 
Atoms which lie between z = 0 and z = Q aye shown as  single 

The  nztiizbers are distances in fL f r o m  the 
atoms, and small circles oxygen atoms. 
circles and those between z = + and z = 1 as double circles. 
potassi im lo the neighbows id ica ted  by the dotted lines. 

TABLE 4. Atomic co-ordinates of the nstion corrected for rotational oscillation (all in A). 
S O(1) 0 (2) O(3) O(4) 

X'  ........................... 4.658 5.279 3.865 4- 00 1 5.879 
0.567 Y' ........................... 1.337 2.101 0.232 

Z' ........................... 4.656 3.609 4.222 5- 642 5.444 
2.168 

TABLE 5. Bond lengths (A) a d  a q l e s  in the $yrosulPhate ion. 

1 
I 

O(l)-S-O(2) 115.5' 
S-0(2) 1.428 & 0.007 O(1)-SO(3) 112.8 

0(2)-%0(3) 113.6 

0 (2)-S-O (4) 10 1 '3 
0(3)-S-0(4) 106.2 J 

S-0(1) 1.438 f 0.007 

S-0(3) 1.447 -J= 0.007 
S-0(4) 1.645 & 0.005 

S-O(4)-S 124.2 0.5' 

O(1)-S-0(4) 106.1 *OS4O 
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as illustrated in Fig. 2. Solution of the appropriate equations 8 gave the mean-square ampli- 
tudes of translation of the ion as 0-0171 A 2  parallel to I, 0.0070 A2 parallel to 11, and 0.0087 Hi2 
parallel to 111; for the rotational oscillations the r.m.s. angular displacements were 6.4' about I, 
2.8" about 11, and 3.3" about 111. The atomic co-ordinates corrected for error due to  rotational 
oscillation are shown, with respect to the orthogonal system, in Table 4. These corrections 

FIG. 2. T h e  
directions of the axes of inertia aye indicated by fu l l  lines, while the orientation of (b)  with respect to the 
crystallographic axes i s  indicated by dofied lines. 

A flyrosulphate anion viewed (a)  along the G axis and (b) down the b axis of the crystal. 

(4 

I 
m 

I 
II 

increased the bond lengths by 0.006 or 0.007 f i  and, as the corrections are small, the error in 
them caused by assuming that the ion is rigid is negligible. 

Interatomic Distances and Angles.-From the co-ordinates in Table 4, the bond lengths and 
angles were calculated and are shown, with their standard deviations, in Table 5, where the 
mean of the chemically indistinguishable bond lengths is also given with its standard deviation. 
In  Fig. 1 the distances, less than 3-5 A, from the potassium ion to its neighbours are shown. 
The shortest oxygen-oxygen distance is 3.04 from O(2) to O(3)" [related t o  O(3) by a screw 
axis at &, y, a]. 

DISCUSSION 
The results show unequivocally that the pyrosulphate ion is bent, the bridging angle 

being 124.2" & 0.5". There is no important difference between the dimensions of the 
pyrosulphate and the bipyrosulphate ionY2 but the accuracy of the results for the latter 
is inadequate to permit a detailed comparison. 

As has been found in several other compounds containing the group X*S03n-, the 
angles about the sulphur atom have trigonal rather than tetrahedral symmetry, the 
X-S-0 angles being less than the tetrahedral angle, and the 0-S-0 angles greater. The 
distortion of the expected configuration probably arises from repulsion between the 
charged oxygen atoms. 

Detailed comparison of our results with those of comparable accuracy for potassium 
ethyl sulphate and potassium iminodisulphonate provides some interesting and 
unexpected results. The corresponding bond lengths and their standard deviations in 
the three anions are : 

1.603 1.464 * C,H,-0 - S ____ (0.007) (0.004) O3 
1-645 1-437 0,s-O ~ S ~ (0.005) (0.004) O3 
1.655 1.447 

(0.007) (0.005) O3 O,S-NH ~ S - 

* These differ slightly from the published values because they have now been corrected more 
accurately for rotational oscillation on the assumption that the ion is a rigid body. 

Cruickshank, Acta Cryst., 1956, 9, 754. 
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In  the pyrosulphate ion the difference between the distances from sulphur to  shared and 
unshared oxygen atoms is greater than in the ethyl sulphate. The possibility that this 
difference arises through random errors is statistically extremely remote. More sur- 
prisingly, there is a significant difference between the S-0 lengths in the ethyl sulphate 
and in the pyrosulphate ions, and correspondingly also in the S-0 bonds; for these 
A/o = 4-8 and 4.5 respectively (where A is the difference between the two lengths and ts 
is the vector sum of their standard deviations), so that the chance that the lengths are 
equal is less than one in lo5. As the sulphur atom has the same environment in both ions, 
it seems reasonable to suppose that the o-bond skeleton is the same. Hence the S-0 
bond in the ethyl sulphate is probably not a pure single bond. There are no significant 
differences between the dimensions of the isoelectronic ions pyrosulphate and imino- 
disulphonate, although the single-bond radii of oxygen and nitrogen differ by 0.04 A. 
This suggests that the central bonds may not be pure single bonds, in agreement with 
Cruickshank's9 theory that all the bonds have some double-bond character arising from 
overlap of the @-orbitals on oxygen or nitrogen with the dx-orbitals of sulphur. Cruick- 
shank's theory, which also explains the changes in the lengths of the S-0 bonds, covers 
all the groups X0,"- and X,O,"- (where X = Si, P, S, or Cl) and its application to the 
pyrosulphate ion will be given in more detail in his paper.g 

As the bond lengths in the iminodisulphonate and pyrosulphate ions differ by only 
0.01 A, the differences in the unit-cell dimensions of the potassium salts must arise from 
differences in the interionic contacts. Fig. 1 shows the contacts from the potassium ion 
to its nine nearest neighbours, and in the Table below the corresponding values for the 
iminodisulphonate are given. In  each compound the K 0 distances have standard 
deviations of 0.01 A, so that some of the differences are statistically highly significant. 
There appears to be no chemical explanation for these variations and they are not related 
simply to the changes in unit-cell dimensions. 

Comparison of interionic distances (all in A). 
K,S,O, . ..... , ..... 2.84 2.87 3.22 3.05 2.76 3-10 2.76 2-81 2-61 
NH(SOJgKP ...... 2.96 2.80 3.07 2.99 2.71 3.23 2.74 2.87 2.70 

EXPERIMENTAL 
It was impossible to obtain pure K2S,0, from solution in sulphuric acid or oleum by any 

of the many methods tried ; the crystalline products usually contained solvated sulphuric acid. 
Crystals were finally obtained by heating " potassium octasulphate," K,O,SSO,, prepared 

by Weber's method,6 in an oven to 450", whereupon sulphur trioxide was liberated and a melt 
of the pyrosulphate formed. Slow cooling of the melt gave a deliquescent solid which was 
broken up under dry carbon tetrachloride. Several large lath-like crystals were formed which 
showed parallel extinction. One of these was cut to give two crystals of approximately square 
cross-section with their long axes parallel and perpendicular to the original long axis, G. Each 
crystal was sealed in a lithium borate glass capillary tube. 

Equi-inclination 
Weissenberg photographs were taken about the three principal axes for all the layer lines 
accessible to  copper K, radiation. Of the 750 possible reflections, 483 gave measurable 
intensities. After correction for Lorentz and polarisation effects the intensities were correlated 
and their square roots extracted. An approximate scale factor was obtained by making zIFol = IIFcpl where F,. was the calculated structure factor for the iminodisulphonate.6 
The scale factor was one of the parameters in the least-squares refinement. 

The scattering factors used were those of Tomiie and Stam 10 for S and of Berghuis et aZ.ll 
for K+ and 0. Refinement was carried out by the method of least squares on the Leeds 
University Ferranti Pegasus computer with programmes 12 devised by Dr. D. W. J. Cruickshank 
and Miss D. E. Pilling. 

The unit-cell dimensions were determined by the Straumanis method. 

The function minimised is 

R' = C W C l F O l  - I q P  
Cruickshank, in preparation. 

lo Tomiie and Stam, Acta Cryst., 1958, 11, 126. 
l1 Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, A cta Cryst., 1955, 8, 478. 

Cruickshank and Pilling and in part Bujosa, Lovell, and Truter, " Proceedings of a Conference on 
Crystallographic Computing," Pergamon Press, 1960. 
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where w is the weighting factor. After the first cycle (for which w was taken as l/lFol) thc 
value of w was taken as 1/(8 + IFo] + 0.0251F012). This proved satisfactory by the criterion 
that R’/n, where n is the number of planes within a given range of IFo], should be constant for 
different ranges. 

Analysis of the thermal motion and calculation of the corrections for rotational oscillation 
were carried out on the Pegasus computer with programmes written by Mr. A Bujosa.12 

The authors are very grateful to Professor E. G. Cox for his advice and interest, to Dr. 
D. W. J. Cruickshank and Miss D. E. Pilling for the use of their programmes, and to Mr. A. 
Bujosa for carrying out part of the computation. We thank the Director of the Leeds 
University computing laboratory for the use of the computer, and the Royal Society and 
Imperial Chemical Industries Limited for some of the equipment. One of us (H. L.) thanks 
the D.S.I.R. for a maintenance award. 
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